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AIIstrad-The homogenization method is used to analyse the equivalent behavior of an elastic composite
material when a tangential slip is allowed on the interface of the components. Asymptotic expansions lead
to the definition of the elastic constitutive law of the homogeneous equivalent material. Numerical
computations using a finite element method are performed on a fiber reinforced material. Results show the
existence of a limit slip coefficient beyond which the stiffness of the material rapidly decreases.

I. INTRODUCTION

When the dimensions of the components of a mixture are much smaller than the structural
dimensions, continuum models in which the inhomogeneities are "smoothed out" often suffice
to describe the motion of the composite. Such examples are found in the use of the effective
modulus theory to describe laminated or fiber-reinforced composite [I]. Another approach, the
effective stiffness theory, using energy methods and developed by Achenbach et al. [2] is able to
predict dispersion for waves. Nevertheless these methods account for particular geometry, such
as laminated or fiber-reinforced composites. The homogenized method proposed herein, foun­
ded on a two scales asymptotic expansion, holds in any case of geometry. Provided the
assumption that the internal structure of an elastic composite material is periodic and moreover
that the period is small compared with the size of the entire structure, the method [3] allows to
determine the elastic properties of an equivalent homogeneous medium. It has been success­
fully applied [4] to the survey of elastic fiber reinforced materials which are now currently used
in various industries.

The goal of this work is to investigate the concept of damage in composite materials. We
consider the effect of a tangential slip at the interface of the components (fiber displacements in
a matrix for instance). A linear law in terms of a scalar coefficient k is used to describe this slip
phenomenon.

Section 2 presents the governing equations of the structure and the mathematical for­
mulation of the problem. Section 3 is devoted to the application of the homogenization method.
Two kinds of investigations can be performed in terms of homogenization theory: the energy
method [5] and the asymptotic expansions method. The energy method allows to state many
mathematical theorems about convergence of the expansions and existence of the solutions.
However, we choose to exhibit, in this paper the asymptotic expansions method which is
particularly convenient for the preliminary studies of a periodic structure. In Section 4, the
equivalent constitutive law is derived. The equivalent medium is an homogeneous, non isotropic
material, and its elastic moduli depend on the parameter k involved in the slip law. The
numerical application to an elastic fiber reinforced material is developed in Section 5. With
additional singular elements along the interface of the components, the finite element method
allows to compute the elastic moduli mentioned above. The behavior of the equivalent material
is considered for various matrix-fiber ratios. The results show the existence of two limit values
of a damage coefficient D expressed in term of k. If D is lower than the smaller one, the
material behaves like the classical composite material in which no slip is allowed between the
components. Otherwise, the elastic properties of the equivalent material rapidly decrease.
When D is greater than the higher limit value, a damaged state of the material is reached.

2. THE GOVERNING EQUATIONS

We consider a composite material with two components. The first one, denoted inclusion, is
an elastic material with generally high performances (such as glass fibers or carbon fibers). The
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remaining part of the material. the matrix, is filled up with a low performance material (epoxy
for instance). The slip conditions are defined along the interface between the components.

However, one can point out that the following theoretical results extend to the hybrid
composite case.

(a) Notations
We consider an elastic material with a periodic structure in the space variable x. More

precisely, the open subset 0 of R3 filled with the unstressed material, can be covered by a set of
periods Pi, each of these periods being the homothetic in ratio E(E > 0, given) of a basic period
Y == ]0, Y2[ x ]0, Y2[ x ]0, Y3[. See Fig. 1.

Each period Y contains two subregions: Y2 which corresponds to the inclusions (in finite
number) and Y1 which corresponds to the matrix. r is the boundary between Y\ and Y2•

Let 0,' denote the connected open set filled with the elastic matrix, and O2' denote union of
the inner elastic inclusions. f' is the interface between 0 1' and O2' and aO the boundary of n.
They are assumed regular.

The elastic structure, characterized by coefficients aijkh(x) is space-periodic. More precisely.
these coefficients derive from the functions:

defined on the basic period Y, extended by periodicity to R3
, and such that:

aij/<h == akltij == ajiklt (symmetry condition)

(ellipticity condition)

Then the elastic coefficients, defined by

are EY -periodic.

(1)

(2)

(3)

(b) The equations 0/ the problem
If the structure is in equilibrium with a system of given external density of body forces

/ == (Ii). the displacements u' == (un being zero on aO, the stress-tensor u == (Ujj) and the

• -w
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Fig. I. Periodic geometry of the domain.

tNote that in (3) and in further expressions the usual summation convention is used.
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displacement field u satisfy the following relations:
• the equilibrium equations:

445

• the constitutive relation:

on D (4)

where
J (au. au)E"(U) =- -' +.::.::L

IJ 2 aXj aXj

• the boundary condition:

(5)

u· =0 on aD (6)

• the interface conditions between inclusions and matrix: we assume that the contact holds
with only a tangential slip allowed which is "elastic" and characterized by a coefficient k > O. so
that:

with:

(7)

UN =u· n,

UN = Uijnjnj,

Ur = U - UNn

(ud; = Uijnj - UNnj.

where n is the outward unit normal to D1', defined on P, and where the bracket denotes the
jump of a fun..:tion through f'

Remarks
• Hypothesis on the body forces and on the boundary conditions allow to state a

well-posed problem in terms of the unknown U·. However, they do not occur in further
considerations about the homogenized constitutive law which holds in any case of data.

• The constitutive equation (7) i .. obtained as the limit behavior of a material which
elasticity moduli depend on the thickr.~ -5 of the layer and vanish as the thickness decreases to
zero. See [6] and [7].

(c) Variational formulation
By classical methods. we obtain a variational formulation of the above problem. First. we

introduce:

Vo={vlv E (H I (D»3, vl~n =O}t (8)

V' == {t' = (v" V2), VI E [H I(D.·)]3, V2 E [H I(O/)]3, [VN] =0 on f'} (9)

and

Vo' == {vlv E V', vl~n == O} (0)

which represents the set of admissible displacement fields. Then, by mUltiplying (4) by v E Vo'

t H'(01 is the Sobolev space defined by:

HI(O) ={ v/v E L2(0l; :~ E L2(O). Vi =1.3} (see (8)).
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and integrating by part over 0 we obtain (by applying the Green formula):

where:

But. taking OHIO) into account, it comes:

Therefore, the formulation of the problem can be written out:

with

o'(u, v) + k/E b'(u, v) =L(l') V, E V,.] Oil

b'(u, v) = f [UT][ vrl dr.
Jr'

(12)

and we can state the theorem:

Theorem
Under the assumptions OH3), Ii E L2(il) and k > 0, there exists, fOT any E > 0, a unique u'

solution of (11).

The proof of this result is given in Pl.
The computer requirements to solve the u··problem increase drastically as E decreases to

zero since it is essential to have a more and more refined grid to approachaccuraiely the
geometry of the inclusions. Therefore, it is natural to analyse the pr.oblem in terms of
asymptotic expansions and consider the limit state as E. decreases to zero.

3. ASYMPTOTIC EXPANSION

We look for an asymptotic expansion of u' as follows[l};

(3)

where the functions ui are Y-periodic with respect to y.
u' is considered as a function of two scale variables. x expresses the macro effects of the

entire structure and y expresst:;s the micro effects of the periodic ceU.
Consequently, (Tij can be expanded as:

with

(14)
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ul, =II,+ alilt.(Y)E~(u'1, II, =alilth(y)e~(ul)

...c7

(IS)

(16)

Therefore, problems (Po) (PI) ... arise by identifying the successive f powers in the
problem (4)-(7):

(a) Problem (Po)
uO(x, y) is Y·periodic with respect to y and satisfies:

[u~.r] =0, [UN'1 =0, u~J =u~=k[ur'1 in r.

The above problem settled in terms of the variable y is a problem (P) (see Appendix A).
Obviously its solution is:

(17)

since x plays the role of a parameter.
One can already note that the first term of the expansion of " does not depend on the micro

variable y and can be considered as a mean displacement altered only by hither order terms.
However, it is not so for the stress field, the micro variable y is elective from the first term.

(b) Probltm (PI)
Taking (7) into account, we find that ul(x, y) is Y-periodic with respect to y and satisfies:

iJ~1 a 0)--"'··=-(a.... )E.. (uiJy/ 11 By, .,.n An
inY

I ~I - k[url
] = - (al/lllE~(u'1l1j)T1

I h - k[ul] = - (alil<~Ek.("'1I1I)n

This formulation shows that "I(x, y) may be written as:

the functions X" being Y-periodic and such that:

where

55 Vol 18. No. ~F

on r.

(18)

(19)

(20)
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on r. (2 I)

This above problem is also a problem (P) and one can verify that the condition (AIO)(see
Appendix A) is satisfied. The problems (l9}-(21) have solutions which are unique, up to a
constant vector, so u· is obtained, when UO is known, by formula (18).

(c) Problem (P2)

Taking into account the expression (18), u2(x, y) is a Y·periodic function with respect to y
which have to satisfy:

in Y

where

I7j = Ojjkht kh(U
2
) 1

I)j = OjjkhEkh(U I)

on r (22)

This problem appears also as a problem (P) (Appendix A). So it has a solution if and only if
the condition:

.:f(c) = 0

is satisfied for any constant vector c. With the notations used in the appendix, wecalcuJate:

Taking (18) into account. it comes:

Moreover:

Therefore, .:f(c) =0 is satisfied if and only if:

(23)
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(24)

then. the eqn (23) can be considered as the static equilibrium equation in the unknown
displacement field uo. The corresponding medium is homogeneous but non-isotropic. its elastic
moduli are given by relations (24).

The coefficient Qi;kJt are called "homogenized" or "equivalent" moduli; these notations can
be justified by the following remark: u· converges weakly to Uo - [7] - and therefore, one can
consider Uo as the limit solution of the problem as E ..... O.

4. THE HOMOGENIZED MODULI

To obtain the homogenized moduli Qiil</" it is necessary, first, to compute the functions x P4 (y).
The integration (24) on Y, then. completes the explicit determination.

(a) Determination of the !unc,ons xPQ(y)
These functions are SOIUl·.1DS of elliptic boundary value problems (19H21), on the basic

period Y.
As our purpose is to compute by a finite element method the functions XP4

, it necessitates to
exhibit the variational formulation of (19)-(21). Using the method worked out in the Appendix,
we obtain for this problem:

(25)

where

The second part of the next section will be devoted to the discretization of equation (25).
Another way to write out the r.h.s. term of (25) is to introduce the functions pii:

pii = (P¥, ~¥, Pf) I
p ~ = Yh k - 1. 2, 3

(25) becomes:

and the last expression a(PP4, q» can be written in terms of surface load

(26)

(27)

(28)

(b) The elective coefficients
Provided the numerical computation of the functions Xii, the QI#ItlI derive from the in­

tegration (24). (24) shows clearly that each coefficient Qjjklt is the mean value, on Y, of the
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corresponding aijil" altered by a corrective term depending on the Xii. Furthermore, as k tends
to infinity, the solutions Xii(k) tend to ii «(Xl) solutions of the homogenization problem of the
perfectly cohesive case [4, 7]. Hence: Qiikk(k)-+ Qiikh(oo).

Moreover, with regards to (26) and (27), we have:

and

therefore:

This above relation shows that the symmetry properties of the constitutive law· ofthe initial
components remain valid for the equivalent constitutive law.

5. NUMERICAL APPLICATION

(a) The fiber reinforced material
The computation of the equivalent coefficients are performed for a composite material

consisting of glass fibers coated with resin. Each component is assumed elastic, homogeneous
and isotropic, with:

E, ::: 84109 Pa; Vf "" 0.22 for the fiber

Em::: 4 109 Pa; l'm =0.34 for the matrix.

The circular cross section fibers are inserted in a parallel direction to Ox). They are uniformly
distributed in the resin with a square basic period. The computation of the Qijkh moduli 1S
performed for various values of the slip coefficient k and for various fiber-matrix ratios.
Problems ('27) reduce to two dimensional problems. In a parallel direction to the fibers the
material can be considered as periodic but with an arbitrary period and consequently the
periodic functions are independent of Y3:

i, j "" 1,2,3.

Moreover, we have (see [7]):

and the same property for x12
, x22 and x33

• These functions are therefore solution of plane
strain elasticity problems, with tangential discontinuities through r.

For the same reasons, we have:

XU =(0,0, xP)

and the same property for x23
• These two functions are solution o·f a scalar problem in R2

, with
discontinuities through f. In both cases, static or tbermalloads are imposed on f.

The Qijih matrix is symmetric as a consequence of the definition of the coefficients.
Moreover, the particularization ora direction (0. X3), the symmetryoft~-basidrame (circular
cross section fibers and square cells) and some parity properties(4) of the Xii imply that the
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equivalent material is orthotropic and the stress-strain relation can be written out:

0'11 QII II QII22 QII )) Ell

O'Z2 QII II QII )) 0 En

0')) Q)) )) E))

O'Z) 2Q13 n E2)

0'31 2Qn n E31

O'IZ 2QI212 EI2

451

Numerical results are expressed in terms of Young moduli. Poisson ratios and shear moduli,
considering the strain-stress relation:

Ell 1/EI -VI2/E I -vn/EI 0'11

EZ2 llEI -vnlEI 0'22

E]) 1/E3 0 0'])

= 1 0'2)E23

E31 J
20n 1 0'31

EIZ 20n 1 0'12

2012

(b) Numerical results
The computation of the Xii has been performed using the finite element method through the

library MODULEF[9]. A classical PI interpolation in HI( ylZ) with an extension to 0 in Yf.
respectively a PI interpolation in H I

( Y~z) with an extension to 0 in Ylz, yield an internal
approximation to the space V. The displacement fields thus obtained are completely dis­
continuous through r. The continuity condition of the normal component of the displacement
fields and the periodicity conditions are performed by a linkage of the concerned degrees of
freedom. These elements do not take into account the slip conditions. Therefore, it is essential
to insert, along r. singular elements, with a 0 thickness, having nevertheless 4 degrees of
freedom (for the scalar problems) or 8 degrees of freedom (for the plane strain problems) (see
Fig. 2). They allow to compute the jump terms of the variational formulation (27). Figure 3
shows the grid used to calculate functions Xii on the basic period.

Fig. 2. Assembly of the interface elements.
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Fig. 3

(0 I

(bl

Fig. 4.
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(c I

(d)

Fi,.4. Solutions xu; (a) XII slatic load; (b) XII; (c) X·2 sialic load; (d) X12.
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In Fig. 4, (a) and (c) present the static loads (see (28» applied on r to compute XlI and xu,
(b) and (d) show the respective distorted cells, for k =107 Palm. The slip which occurs along r
appears sharply on these figures.

The next figures show the alterations of the elastic coefficients of the equivalent material as
the damage coefficient:

decreases. The coefficient K =(kL/:&) is dimensionless, the characteristic length L beina equal to
one.

The Young modulus E3 and the Poisson ratios "13 =V23 do not appear on the Fipre: they
remain eonstant and equal to that of the perfecdy cohesive case.

When D =0, no slip is allowed, and the coefficients values aaree with the classical result[IO)
(i.e. in the cohesive case). This undam••d state remains until D reaches a lower bound D",. On
the other hand, when D is JTeater than an upper bound D." the coefficients no lonaer depend on
D. The material is in a damaged state and some of the coefficients are then lower than that of
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the matrix (which is a poor elastic material). Particularly. one can point out tbat tbe shear
moduli GI) and 0 23 nearly vanish as D increases.

Another remark is that the steps Dill and DN are independent of the fiber-matrix ratio and
are the same for each coefficient.
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APPENDIX A
Problems (Po). (PI) and (P2) derive from a more general one whose formulation is as follows:

Problem (P)

Find Ii(y), a Y-periodic function satisfying:

iJ. f')' Y--u.. : ·(v IndJj IJ 1_

lli.. J=O, IU~J= hI>:) Ion r
un- klur]=gl(Y)' un-klur] =82(Y)

(All

(A2)

(A3)

where f, h, 81 and 82 are given functions defined on Y or r. We study here this auxiliary problem, and first we give the
variational formula/ioll.

Let V be:

value~ of r being equals on two opposite faces of Yl·

Multiplying (A II by t' E V and integrating over Y, we obtain (by applying Green formula on Y, and Y2):

Taking into account periodic conditions for t' and [r] =0 on r. it comes:

(, (Iu,]r... + [urrr]) dr + a(Ii, tI) =Ur)

where

Therefore. using relations (A3) on r, (A6) becomes:

L(h t" + klurllvrJ+ 8iVn - gtvr,}df+ a(1i, v) =[(r).

We set:

(A4)

(A5)

(A6)

(A7)

(A8)
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and finally. the variational formulation can be wrinen out:

Ii E V

a(u,v)+kb(li.v)=l.(I·)+D(V) VvE V

457

(A9,

A necessary condition for the existence of a solution to problem (A9) arises from this formulation. If we choose r =c where (
belongs to ~ (the set of conslant vectors on Y) we obtain:

0= U.e) + D(e) =.2'(e) 'Ie E rt (AIO,

therefore. if i. h. gl and gz are such that .2'(e) # O. problem (P) has no solution. Provided this remark. we can now state the
existence and uniqueness result:

Theortm
Under the hypothesis (1\-(3). k > 0 and rE (LI( Y»l. h E LZ(f). gl. gI E (LI(r»I satisfying (A 10). the problem (PI

has a unique solution. up to a conslant vector. denoted Ii.

Proof
If the condition (A 10) holds. we note that the problem (A9) can be expressed on the quotient space W = V/~. In order lO

obtain the result. it is essential to look for a convenient norm of space W.

First. we remark that V is a subspace of [H I( YIW x [HI( Yzll' which is an Hilbert space for the norm:

(All)

where I: Ii, is the norm in [H1(y.W.lflik denotes the norm in LI(y.). we choose (ef.[II)):

Therefore. one can state (see (4)) that the quantity

III vIII =(/lvllI, I +I leIJ(Vz)IzI+ b(v. v»"1
'I

is an hibertian norm. equivalent to (All). on the space V.
Moreover. in [12) it was shown that W is an Hilbert space with respect to:

IIL'li =Inf 1111' +elll
rE'f

and. furthermore. we shall prove the auxilary lemma:

Lemma
The quantity

is a norm on W. equivalent to quotient norm (AI3).
Consequently. if we consider the bilinear form:

(u, L·) ... a(u, v)+kb(u. v).

(AI2)

(AI3l

(AI4)

(AI~)

laking into account (1)...(3), k >0, one can prove that (AI4) is continuous and coercive on W. Therefore, applying Lax Milgram
theorem. we conclude that the problem (P) has a unique solution on W. So, provided the proof of the previous lemma the
existence theorem holds. •

Proof of 1M Quxilary lemma
(i) Obviouslv. we have:

HvlF = Inf IHv +ellF = NI(v) + In! IVI +eil l

rE'f rEV

so:

(ii) Reciprocally. let us show that there exists a constant C such that:

(A161

For this purpose. we set P. the orthogonal projection operator from (LI ( YI ») into ~ (with respect to the scalar product
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corresponding to I I,); then:
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and, consequently, (AI6) is proved if and only if

To prove (A 17) we assume that for any positive n one can associate a sequence r' =(1'1', vn E V such thaI:

(Am

Then, {.... j is bounded in V and there exist, a subsequence l"'~ = (WI~' ...t)J which converges weakly to "'0 in V; hence,
"'I~ converges strongly in /Ll/yl )/! (see [13J). so:

(AI8)

Moreover, by lower semi-eontinuity:

so:

This implies:

and consequently:

Furthermore. (1<',0, c) =0, 'lie E 'i. Therefore, ",0,= O. But it is inconsistent ,,'irh (AIS) and this completes the proof of the
lemma.


